Tag Archives: Education

Dopamine Agonist Withdrawal Syndrome (DAWS) in Parkinson’s

“Some remedies are worse than the disease.” Publilius Syrus

“Each patient carries his own doctor inside him.” Norman Cousins

Summary: Dopamine agonists are widely used in the treatment of Parkinson’s, especially as a first-line therapy. Some patients on a dopamine agonist experience side-effects that require either tapering or discontinuation of the drug.  First described in 2010, dopamine agonist withdrawal syndrome (DAWS) is a complication of ~20% of Parkinson’s patients who are either lowering or stopping the dopamine agonist.  DAWS presents as a cluster of physical and behavioral symptoms [e.g., agitation, depression, drug craving, and panic attacks (to give a few possible symptoms)]. There is no known standard-of-care in dealing with DAWS in Parkinson’s. Presented here is a brief overview of DAWS in Parkinson’s including dopamine agonists, clinical description, risk factors and prevalence, mechanism of action, treatment/management, and key publications.

“To heal illness, begin by restoring balance.” Caroline Myss

Dopamine agonists (DA): Dopamine agonists are ‘mimics’ of dopamine that pass through the blood brain barrier to interact with target dopamine receptors. Symptomatic treatment of Parkinson’s remains dopamine replacement, including the DA’s.  Dopamine agonists are frequently the first line of choice for therapy for the just diagnosed Parkinson’s patient. Dopamine agonists do help control motor symptoms in Parkinson’s although there can be significant side-effects (see Table below). Also below is a Table describing DA’s. The DA side effects can become intolerable for some people-with-Parkinson’s, and the decision to taper or withdraw the DA is made. Or maybe you’re a candidate for deep-brain stimulation (DBS) surgery and to calibrate the device you’ll be asked to stop your Parkinson’s medication for a short period of time.

18.01.03.DA+DAWS

18.01.03.DA+DAWS

“I enjoy convalescence. It is the part that makes the illness worth while.” George Bernard Shaw

First report of dopamine agonist withdrawal syndrome (DAWS): Dopamine agonist withdrawal syndrome (DAWS) was first described in 2010 by Rabinak and Nirenberg on five of their patients with non-motor impulse control behavioral disorders (ICD) caused by the DA; thus, they were tapered. Two patients were further described in this publication. The first patient was a 67-year-old woman with a six year history of Parkinson’s, and she had been taking various drugs including a DA. She had developed a difficult ICD, and they elected to taper the DA; unexpectedly, she then had severe anxiety and dysphoria. They tried an increase in carbidopa/levodopa and they used other therapy for cognitive behavior control; to no benefit to the patient. They changed her back to the original DA dose and she had a rapid and dramatic improvement in all of her symptoms. This patient continues to use the DA and remains with the difficult ICD.

Patient #2 was a 61-year-old woman with a six-year history of Parkinson’s and likewise an ICD prompted by the DA; she began a DA tapering with increased carbidopa/levodopa medication.  During the DA taper, she developed depression and severe anxiety and became agitated; she also had fatigue and insomnia.  As with Patient #1, adding back the DA improved all of her non-motor symptoms. It took several years for her to successfully reduce her DA doseage. The figure below visually highlights some of the key symptoms of DAWS.

18.01.04.DAWS_faces

What both cases shared were prominent psychiatric symptoms, poor response to both additional carbidopa/levodopa (to take the place of the DA) and psychiatric medication; however, both had rapid improvement in their ‘new symptoms’ when placed back on the DA. The majority of DAWS symptoms are presented in the the Table below.Document5“The secret of learning to be sick is this: Illness doesn’t make you less of what you were. You are still you.” Tony Snow

Risk-factors and prevalence of DAWS: Since the original study in 2010, there have been several follow-up studies on DAWS. Some of the studies speculated that a large DA dose in the presence of pre-existing ICD are the most important risk factors for DAWS. The ‘number’ talked about frequently is something called the ‘levodopa equivalent daily dose’ (LEDD) of the dopamine agonist, where it has been suggested that >150 mg was linked to an increased risk of DAWS. Use this on-line program to calculate your LEDD (click here).  Here is an LEDD example: someone taking 14 mg ropinirole/day (with the online algorithm), the LEDD would be 280 mg daily.  What? OK, so what did you say?  This means if you wanted to replace the 14 mg/day ropinirole with carbidopa/levodopa you would need about 300 mg per day of levodopa based on this calculation.  I refer you to do the papers cited at the end of the blog post for more details about LEDD. What is interesting is several of the studies have compared the taper versus total withdrawal of the DA; it does not seem to alter the risk of DAWS.  Good news is if you’re not having any detrimental side effects from the DA, just continue on and you’re good to go. The bad news is if you are having some side effects and you want to try and eliminate them by tapering down need to carefully consult with your neurologist and work up a feasible plan.  Please remember I’m a biochemist, not a physician, and I just am interpreting data from publications.

The prevalence of DAWS has been reported to be between 15 and 19% in patients with Parkinson’s; it seems to be consistently about one-in-five.  As mentioned previously, there appears to be no difference in relative risk of DAWS comparing patients that discontinue DA completely or those that reduce the DA by taper. Based on the percentage mentioned above, this says ~4 out of 5 people-with-Parkinson’s can DA taper without any problems.

“It is in moments of illness that we are compelled to recognize that we live not alone but chained to a creature of a different kingdom, whole worlds apart, who has no knowledge of us and by whom it is impossible to make ourselves understood: our body.” Marcel Proust

DA mechanism of action to cause DAWS:  To recap, DAWS occurs in a subset of patients with Parkinson’s that have had difficulties managing the side effects of a DA, and the decision has been made to remove that DA from the patient’s regimen.  The simplest notion is that you would then replace the DA with an increased dose of carbidopa/levodopa (using the LEDD); however, this is Parkinson’s and this is the brain and it’s just not going to be that easy. The diagram below summarizes a very simplistic view of dopamine and DA’s in their interactions with motor and reward pathways.  There is no doubt that in treating Parkinson’s, the replacement of dopamine is crucial for many different physiological functions in the human body. Dopamine agonists and dopamine share similar binding properties to dopamine receptors. They are very important in improving motor symptoms (through the nigrostriatal pathway) but there is also some potential detrimental crossover to the reward center (through the mesocorticolimbic pathway).  It is this minor pathway that is linked to the increased risk of ICD in some patients being treated with a DA. It is not clear, however from the data published so far that there is a difference in this 20% of the patient population in their mesocorticolimbic circuitry system with the DA in comparison to the other 80% of the population.  In summary, what causes DAWS during DA tapering is not well understood.18.01.07.Dopamine_Motor_Reward“Medicine is intention. Those who are proficient at using intention are good doctors.” Sun Simiao

Treatment/management of DAWS during DA taper:  DAWS is a relatively recent phenomena related to DA withdrawal.  Patients with (i) a predisposition to ICD and (ii) a larger dose of DA are apparently at increased risk of developing DAWS. There is no well-delineated treatment plan that the neurologist can follow; best recommendation (from the papers cited below) is the patient should be tapered at a very slow dose reduction over a long period of time, and see what happens. Clearly, it is crucial that the patient and the neurologist carefully evaluate signs of ICD and DAWS at every visit, especially for patients at high risk.

“The treatments themselves do not ‘cure’ the condition, they simply restore the body’s self-healing ability.” Leon Chaitow

 Summary: As someone with Parkinson’s, I’ve done a lot of reading about treatment strategies (what’s good and what’s not so good). For someone my age there would almost always be a recommendation to begin the DA (the so-called sparing one of levodopa until it’s absolutely needed) and then as symptoms progressed, you would switch over and combine the DA with carbodipa/levodopa.  Had I read the opinions of Dr. Ahlskog in the beginning, I might have opted to start with carbidopa/levodopa without the DA (Ahlskog JE. Cheaper, Simpler, and Better: Tips for Treating Seniors With Parkinson Disease. Mayo Clinic Proceedings. 2011;86(12):1211-6. doi: https://doi.org/10.4065/mcp.2011.0443). Biochemically, DAWS is an interesting problem but there needs to be additional studies to delineate the mechanism of action. Finally  DAWS clinically is worrisome and definitely not well-understood; and likely, the scope of DAWS is under-recognized.

Key References:

  1. Rabinak CA, Nirenberg MJ. Dopamine agonist withdrawal syndrome in Parkinson disease. Arch Neurol. 2010;67(1):58-63. doi: 10.1001/archneurol.2009.294. PubMed PMID: 20065130.
  2. Nirenberg MJ. Dopamine agonist withdrawal syndrome and non-motor symptoms after Parkinson’s disease surgery. Brain. 2010;133(11):e155; author reply e6. doi: 10.1093/brain/awq165. PubMed PMID: 20659959.
  3. Cunnington AL, White L, Hood K. Identification of possible risk factors for the development of dopamine agonist withdrawal syndrome in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(9):1051-2. doi: 10.1016/j.parkreldis.2012.05.012. PubMed PMID: 22677468.
  4. Pondal M, Marras C, Miyasaki J, Moro E, Armstrong MJ, Strafella AP, Shah BB, Fox S, Prashanth LK, Phielipp N, Lang AE. Clinical features of dopamine agonist withdrawal syndrome in a movement disorders clinic. J Neurol Neurosurg Psychiatry. 2013;84(2):130-5. doi: 10.1136/jnnp-2012-302684. PubMed PMID: 22933817.
  5. Edwards MJ. Dopamine agonist withdrawal syndrome (DAWS): perils of flicking the dopamine ‘switch’. J Neurol Neurosurg Psychiatry. 2013;84(2):120. doi: 10.1136/jnnp-2012-303570. PubMed PMID: 22993451.
  6. Nirenberg MJ. Dopamine agonist withdrawal syndrome: implications for patient care. Drugs Aging. 2013;30(8):587-92. doi: 10.1007/s40266-013-0090-z. PubMed PMID: 23686524.1.
  7. Nirenberg MJ. Dopamine agonist withdrawal syndrome: implications for patient care. Drugs Aging. 2013;30(8):587-92. doi: 10.1007/s40266-013-0090-z. PubMed PMID: 23686524.
  8. Solla P, Fasano A, Cannas A, Mulas CS, Marrosu MG, Lang AE, Marrosu F. Dopamine agonist withdrawal syndrome (DAWS) symptoms in Parkinson’s disease patients treated with levodopa-carbidopa intestinal gel infusion. Parkinsonism Relat Disord. 2015;21(8):968-71. doi: 10.1016/j.parkreldis.2015.05.018. PubMed PMID: 26071817.
  9. Huynh NT, Sid-Otmane L, Panisset M, Huot P. A Man With Persistent Dopamine Agonist Withdrawal Syndrome After 7 Years Being Off Dopamine Agonists. Can J Neurol Sci. 2016;43(6):859-60. doi: 10.1017/cjn.2015.389. PubMed PMID: 26842385.
  10. Patel S, Garcia X, Mohammad ME, Yu XX, Vlastaris K, O’Donnell K, Sutton K, Fernandez HH. Dopamine agonist withdrawal syndrome (DAWS) in a tertiary Parkinson disease treatment center. J Neurol Sci. 2017;379:308-11. doi: 10.1016/j.jns.2017.06.022. PubMed PMID: 28716269.
  11. Yu XX, Fernandez HH. Dopamine agonist withdrawal syndrome: A comprehensive review. J Neurol Sci. 2017;374:53-5. doi: 10.1016/j.jns.2016.12.070. PubMed PMID: 28104232.
  12. Solla P, Fasano A, Cannas A, Marrosu F. Dopamine agonist withdrawal syndrome in Parkinson’s disease. J Neurol Sci. 2017;382:47-8. doi: 10.1016/j.jns.2017.08.3263. PubMed PMID: 29111017.

“Life always gives us exactly the teacher we need at every moment. This includes every mosquito, every misfortune, every red light, every traffic jam, every obnoxious supervisor (or employee), every illness, every loss, every moment of joy or depression, every addiction, every piece of garbage, every breath. Every moment is the guru.” Joko Beck

Cover photo credit: f.fwallpapers.com/images/sun-peeking-through-snow-covered-trees.jpg

Agitation- img.aws.livestrongcdn.com/ls-article-image-400/cme/cme_public_images/www_livestrong_com/photos.demandstudios.com/49/85/fotolia_4199215_XS.jpg
Depression- http://www.scientificamerican.com/sciam/cache/file/FCD288AE-5C2E-49F2-85858FA255A8034B_source.jpg
Fatigued- www.belmarrahealth.com/wp-content/uploads/2017/03/fatigue-in-the-elderly-300×200.jpg
Panic attack- lifetimewoman.com/wp-content/uploads/2016/09/panica-1.jpg

7 Tips and Healthy Habits for Working with Parkinson’s

“Nothing will work unless you do.” Maya Angelou

“The best preparation for good work tomorrow is to do good work today.” Elbert Hubbard

Précis: Over the past eight weeks, some loyal readers and several friends have asked me: “Is everything  okay?”; “Has my health taken a downturn?”; “Have you stopped writing your blog?”; “I have been worried about you because it has been well over six weeks since your last blog post.”  I responded to each that I was well and doing fine, my health has been steady. However, the fall semester (early August-early December) for me is over-flowing with my job/work (teaching, administrative and still trying to maintain some research) and other commitments (service) [let alone trying to find time to exercise and other personal time], which leads to very little spare time to even think about composing a blog post. I apologized to everyone who contacted me; and I do stand in awe of all of the bloggers I follow who are able to both write and work full-time at the same time.  Thus, the topic for the current post is about having a career/full-time job in the presence of Parkinson’s disease.

“The world is full of willing people; some willing to work, the rest willing to let them.” Robert Frost

There is an old saying that ‘there are people who work to live’ and that ‘there are people who live to work’: One of these phrases likely describes your attitude (or opinion) about your job/career.  One phrase is not more correct than the other phrase. Likely, one phrase will matter in which career path you follow and it will contribute to your overall satisfaction in work-matters.  Thus, an honest assessment will help you identify which of these beliefs you most are aligned with as your life and career unfolds.  Your happiness matters.

I have been in an academic medicine setting for the past 35 years and I am more closely linked with the phrase ‘live to work’.  I have never regretted this career choice.  It has taken me a long time to understand the how and the why of my academic career successes and advances mixed with the typical setbacks/compromises.  A dear friend recently told me she could not imagine me doing anything else career-wise, it’s a perfect match. Currently, I am still able to work 6 days/week with the following goals: educating future healthcare providers, serving on several committees, and planning that next experiment to get one more research proposal submitted/funded.  Then Parkinson’s happened.

“The only place success comes before work is in the dictionary.” Vince Lombardi

The equilibrium between life and career: The “life-work equation” is now of primary importance to me.  My version can be summarized as given below (likely, you’d have different/additional variables in your own ‘personal’ life-work equation):

Health (exercise and living with Parkinson’s) + Living (importance of loved ones, family, friends, colleagues) + Career (teaching and research) = Life.

The spectrum of balancing life-work ranges from happy/positive/fulfilling to unhappy/unfulfilling/find something else to do/not enough time to manage my Parkinson’s.  Ultimately, at 64 years of age, and with Parkinson’s, I need to consider adding another possibility (or dimension) to my life-career equation, namely retirement.  Well, at least, the thought has been planted.

“The only way to do great work is to love what you do. If you haven’t found it yet, keep looking. Don’t settle.”  Steve Jobs

7 tips and healthy habits for working with Parkinson’s: Clearly, understanding and balancing your career is an important aspect to your life (something that has not always been obvious to me).  Taking care of your health and career, especially in the presence of Parkinson’s is of paramount importance and will contribute to your wellness and happiness.  These are straightforward suggestions for you to consider while working with Parkinson’s; hopefully, this list will serve as a reminder about their importance. Also shown below are several photos of me at work and at play. Here is a 1-page summary of the “7 Tips and Healthy Habits for Working with Parkinson’s” (Click here to download file).

Slide1

17.12.26b_7 Habits For Working with PD

[1] Executive Function. Executive function describes the group of mental skills that help you get things done. The frontal lobe of the brain controls your ability to execute these skills.  There are three key features to executive function: (1) working memory allows you to keep information in your mind and use it appropriately; (2) cognitive flexibility is being able to think about something in more than one way; and (3) inhibitory control  is being able to ignore something and resist temptation. Executive function allows you to manage time, pay attention, plan and organize, remember details and the ability to multitask.  Many with PD show a slow erosion of executive function. You need to recognize this aspect of your mind is partly responsible for your ability to work well (or not); therefore, keep going as best you can. 

executivefunctioncoaching3“The essence of strategy is choosing what not to do.“ Michael Porter

[2] Be willing to discuss your disease.  You have made the decision to inform others about your Parkinson’s and tell your friends and colleagues. Good for you!  In my case, I spent almost a year trying to avoid telling people about my Parkinson’s. Instead I just informed people who worked with me, my family and close friends. In hindsight, living openly with Parkinson’s is so much easier because everyone has been very supportive, receptive and very caring. To most people, Parkinson’s is a mystery. And it gets more difficult, not easier, when your colleagues (family and friends) acknowledge that they know about Michael J. Fox, Robin Williams and Mohammad Ali.  Educating your colleagues about you, your issues, your disease gives you so much credibility and bolsters respect among your peers.

This above all; to thine own self be true.” William Shakespeare

[3] Stay positive and go forward. At times, you live negatively and go backwards. Focus on staying positive and practice moving forward; your co-workers will appreciate the effort. A constant theme of this blog has been to try to remain positive and to live in a forward manner and not look backwards. We can reflect on today and you can plan for tomorrow all you can do is relive yesterday. It’s much better to stay positive and go forward.

List of positive words:

list-of-positive-words

Always turn a negative situation into a positive situation.” Michael Jordan

[4] Exercise, sleep and eat well. In the absence of regular exercise, adequate sleep and a healthy diet you’ll be unable to work effectively.  Just do all three each day; everyone around you at work will care for you even more, why?  Because you are now positively fueling your entire body-mind. Go here for a few additional blog posts on these topics: exercise (9 Things to Know About Exercise-induced Neuroplasticity in Human Parkinson’s; Golf And Parkinson’s: A Game For Life; Meditation, Yoga, and Exercise in Parkinson’s); sleep (Sleep Disturbances in Parkinson’s and the Eagles Best Song Lyrics; Sleep, Relaxation, And Traveling; 7 Healthy Habits For Your Brain); and nutrition (Diet and Dementia (Cognitive Decline) in the Aging; B Vitamins (Folate, B6, B12) Reduce Homocysteine Levels Produced by Carbidopa/Levodopa Therapy).

17.12.28.Healthy_brain

A lifestyle is what you pay for; a life is what pays you.” Thomas Leonard

[5] Stress reduction and mindfulness. Cortisol is produced as a by-product from stress.  Mindfulness reduces stress to reduce cortisol levels, a winning scenario for you at work and your brain will be healthier.  Take time during the work-day to practice mindfulness; even 5’ daily improves your body-heart-mind-soul axis.

stressresponse

Men for the sake of getting a living forget to live.” Margaret Fuller

[6] Gadgets can make a big difference.  Technology today is simply amazing; take advantage of it to keep going in your job. For example, if you type a lot on a keyboard/computer, use dictation with Dragon®. If your posture is poor from sitting all day at a desk, get the BackJoy® and help better support your back.   I  definitely have  a tendency to sit too long when I’m focusing on work and writing; one way I deal with it is to have Alexa (my Amazon Echo Dot®) set a timer for every 20 minutes to get me up and stretching.  I also have my Fitbit Charge 2® exercise watch set in silent alarm mode to vibrate every five and six hours, respectively, to remind me to take my medication. Just a few examples of many.

Technology feeds on itself. Technology makes more technology possible.” Alvin Toffle

[7] Have a career plan with accommodations. Let’s  be realistic and accept the notion that our PD symptoms may eventually interfere with our work.  Be self-aware of these small physical/mental changes; be prepared (proactive) and have a Plan B or a Plan C ready to implement. Consider that stopping work and being diagnosed with Parkinson’s are both typically at 60 something years of age, which makes the intersection of job and PD diagnosis/progression a very important “X marks the spot”.

I never think of the future – it comes soon enough.” Albert Einstein

Working while with Parkinson’s:  I have had Parkinson’s for the past ~6 years, and I am still working full-time.  No doubt Parkinson’s affects each person differently; it allows some to continue to work and others must stop.   For the past two years, I’ve been contemplating a couple of different plans once I stop working full-time. They consist of phasing-out retirement, exercise, PD outreach, teaching, and a few other ‘opportunities’ that I’m not yet ready to describe because they are still being developed. My future will likely be as busy as I am now but not necessarily all at the same place or at the same time.  When the full-time clock stops ticking it will be because either “it’s time, I’ve done enough” or my health has interfered with my schedule. My plan is still a couple of years away from being implemented. Like everyone with Parkinson’s, I’m acutely cognizant of my disorder. In the meantime, I have much left to accomplish with my education-science-service-outreach.

“Thunder is good, thunder is impressive; but it is lightning that does the work.” Mark Twain

“Beingness, doingness and havingness are like a triangle where each side supports the others. They are not in conflict with each other. They all exist simultaneously. Often people attempt to live their lives backwards: They try to have more things, or more money, in order to do more of what they want, so that they will be happier. The way it actually works is the reverse. You must first be who you really are, then do what you need to do, in order to have what you want.” Shakti Gawain

Cover photo credit: xinature.com/wp-content/uploads/2016/10/winter-trees-sun-lake-ice-dusk-sunshine-nature-water-snow-scene-landscape-sunrise-dawn-desktop-scenes.jpg

Executive function image: goosecreekconsulting.com/picts/executivefunctioncoaching.jpg

Stress response image: themeditatingman.com/wp-content/uploads/2016/08/stressresponse.jpg

Effect of Forgiveness on Health

“When you forgive, you in no way change the past – but you sure do change the future.”  Bernard Meltzer

“The first step in forgiveness is the willingness to forgive.” Marianne Williamson

Précis: Recently had a friend go through a difficult break-up from a marriage. The notion of getting past the failed relationship, achieving forgiveness, and moving on without causing illness was of paramount importance. The implications of forgiveness/unforgiveness as it relates to health-illness crossed my mind. It started with assembling the quotes in this post. Next, I did a Google Scholar search for “forgiveness and health” and discovered a whole new area of psychology-science-medicine (well, it was new to me). Most of us would agree that forgiving yourself promotes wellness; whereas remaining unforgiven could disrupt your mental and possibly even your physical health.  This post reviews forgiveness and its positive impact on our health.

“Forgiveness is really a gift to yourself – have the compassion to forgive others, and the courage to forgive yourself.” Mary Anne Radmach

Forgiveness and Health: The Oxford dictionary defines ‘forgive’ as to stop feeling angry and resentful towards (someone) for an offense, flaw, or mistake.  Positive psychology is the scientific study of the strengths that enable individuals and communities to thrive. Forgiveness is a big part of positive psychology regarding both physical and mental well-being.   Over the past 15 years, researchers have focused on 2 primary hypotheses: (1) forgiveness has important connections to physical health; and (2) this relationship is guided by an association between lack of forgiveness and anger.  Evidently, there is consensus in the field that these two primary processes form the basis of forgiveness: (i) letting go of one’s right to resentment and negative judgment; and (ii) fostering undeserved compassion and generosity toward the perpetrator.  The first process implies a person would reduce their negative emotions (i.e., anger and revenge); while  the second process involves increasing positive feelings and might even include reconciliation. Collectively, there is growing scientific evidence that links the positivity of forgiveness and health.

“He who is devoid of the power to forgive is devoid of the power to love.” Martin Luther King, Jr.

“The more you know yourself, the more you forgive yourself.” Confucius

Forgiveness vs. Unforgiveness: It is probably apparent (to you) that forgiveness is generally associated with improved mental and physical health, as opposed to someone unable/unwilling to forgive.  Modeling the relationship between forgiveness and health, based on the hypothesis that forgiveness reduces hostility (and this would be considered healthier), 6 paths linking forgiveness and health have been described: (i) decrease in chronic blaming and anger; (ii) reduction in chronic hyper-arousal [“a state of increased psychological and physiological tension marked by such effects as reduced pain tolerance, anxiety, exaggeration of startle responses, insomnia, fatigue and accentuation of personality traits.”]; (iii) optimistic thinking; (iv) self-efficacy to take health-related actions; (v) social support; and (vi) transcendent consciousness (“state achieved through the practice of transcendental meditation in which the individual’s mind transcends all mental activity to experience the simplest form of awareness“).

What does this mean? The majority of studies on forgiveness indicate a reciprocal relationship to hostility, anger, anxiety and depression.  Forgiveness may directly alter sympathetic reactivity, which is often referred to as the “fight-or-flight” response. These responses include increases in heart rate, blood pressure, cardiac contractility, and cortisol.  This implies that unforgiveness could promote an acute, stress-induced reactivity that could be associated with general health problems.  However, it is much more complicated than this simplistic flow of events: anger is a component of unforgiveness; anger is a health risk; therefore, unforgiveness is a health risk.  This is really interesting reading but way beyond my training as a protein biochemist (If interested, look over the references listed below)

Forgiveness and Mental Health: Let’s take a different angle by looking at mental health. We begin with unforgiveness as being associated with stress from an ‘interpersonal’ offense and stress is associated with diminished mental health. Furthermore, unforgiveness due to an ‘intrapersonal’ wrongdoing may lead to shame, regret and guilt, which could also negatively affect mental health. The positive impact of forgiveness may help correct the downturn in mental health that resulted from either interpersonal or intrapersonal stress.  In many instances, mental health is linked to physical health. This suggests that practicing forgiveness would positively influence mental health and could therein bolster physical health.

To summarize the ability of forgiveness to bolster mental health, I have re-drawn the figure from Toussaint and Webb  (2005) as a 4-piece puzzle. It begins with the ‘direct effect’ of forgiveness as told through unforgiveness with emotions of resentment, bitterness, hatred, residual hostility, and fear. The negative emotions of unforgiveness could contribute significantly to mental health problems.  By contrast, the emotion of forgiveness is positive and strong and love-based that could improve mental health. The ‘indirect effect’ of forgiveness through social support, interpersonal behavior and health behavior are all positively-linked to good mental health. The ‘developmental stage’ describes the recognition of the problem, need for an alternative solution, and ultimately the effect of forgiveness augments mental health.  The final piece to the puzzle is the ‘attributional process’, which suggests that being able to forgive bolsters personal control of one’s life, which is perceived to be positive.  By contrast, unforgiveness blocks this life-controlling process by consumptive negative emotions made worse in the individual through rumination.  Due to my own internal word limit and time-period to read/understand the topic, I have not included the religious or spiritual basis of the forgiveness of God, feeling God’s forgiveness, and seeking God’s forgiveness in the narrative of this post.  For many people, these would be integral components to the discussion here on forgiveness and its overall impact on both mental and physical health.

Forgiveness.2

“I don’t know if I continue, even today, always liking myself. But what I learned to do many years ago was to forgive myself. It is very important for every human being to forgive herself or himself because if you live, you will make mistakes- it is inevitable. But once you do and you see the mistake, then you forgive yourself and say, ‘Well, if I’d known better I’d have done better,’ that’s all.” Maya Angelou

9 Steps to Forgiveness (Fred Luskin, LearningToForgive.com): Dr. Luskin is a noted-researcher in the field of forgiveness. His belief is that by practicing forgiveness, your anger, hurt, depression and stress will all be reduced and it will increase feelings of hope, compassion and self confidence. Furthermore, he believes that practicing forgiveness contributes to healthy relationships and to improved physical health; here are the 9 steps to forgiveness:

  1. Know exactly how you feel about what happened and be able to articulate what about the situation is not OK. Then, tell a trusted couple of people about your experience.
  2. Make a commitment to yourself to do what you have to do to feel better. Forgiveness is for you and not for anyone else.
  3. Forgiveness does not necessarily mean reconciliation with the person that hurt you, or condoning of their action. What you are after is to find peace. Forgiveness can be defined as the “peace and understanding that come from blaming that which has hurt you less, taking the life experience less personally, and changing your grievance story.”
  4. Get the right perspective on what is happening. Recognize that your primary distress is coming from the hurt feelings, thoughts and physical upset you are suffering now, not what offended you or hurt you two minutes – or ten years – ago. Forgiveness helps to heal those hurt feelings.
  5. At the moment you feel upset practice a simple stress management technique to soothe your body’s flight or fight response.
  6. Give up expecting things from other people, or your life, that they do not choose to give you. Recognize the “unenforceable rules” you have for your health or how you or other people must behave. Remind yourself that you can hope for health, love, peace and prosperity and work hard to get them.
  7. Put your energy into looking for another way to get your positive goals met than through the experience that has hurt you. Instead of mentally replaying your hurt seek out new ways to get what you want.
  8. Remember that a life well lived is your best revenge. Instead of focusing on your wounded feelings, and thereby giving the person who caused you pain power over you, learn to look for the love, beauty and kindness around you. Forgiveness is about personal power.
  9. Amend your grievance story to remind you of the heroic choice to forgive.

“Forgiving does not erase the bitter past. A healed memory is not a deleted memory. Instead, forgiving what we cannot forget creates a new way to remember. We change the memory of our past into a hope for our future.” Lewis B. Smedes

Forgiveness in the Presence of Parkinson’s:  Receiving a diagnosis of Parkinson’s, a lifelong chronic progressive neurodegenerative disorder is a real shock.  The diagnosis comes with a variety of emotions. After a while, acceptance takes over; no, not your identify, just ok, I’ve got Parkinson’s, live through it, make the most of this experience. Eventually I had to put forgiveness into part of this living-life-equation. There were two self-involved events where I might have contributed to the development of my own disease.  The first was as a young boy in the summertime riding my bicycle behind the DDT trucks spraying for mosquitoes on our Air Force bases [Dichlorodiphenyltrichloroethane (DDT) is a colorless, tasteless, and almost odorless crystalline organochlorine known for its insecticidal properties]. DDT is one of the known chemical inducers of Parkinson’s. Second, in graduate school before OSHA took over regulating lab safety, I routinely used many different noxious compounds for the benefit of science and for the completion of my PhD. Both events caused me to pause and ponder; however, I decided to forgive myself. I truly believe had I remained unforgiving, I would have paved a path of ill health.

This whole process of dealing with the emotion from diagnosis to acceptance (and forgiveness) of Parkinson’s reminds me of the opening verse of “We Are The Champions” by Queen: “I paid my dues/ time after time./ I’ve done my sentence/ but committed no crime./ And bad mistakes-/ I’ve made a few./ I’ve had my share of sand kicked in my face/ but I’ve come through./  (And I need to go on and on, and on, and on)

The vast majority of people with Parkinson’s are 60-years of age or older (although there is a group of early-age-onset). Interestingly, in a recent study with an elderly population, forgiveness showed positive and significant association with mental and physical health.

“You cannot travel back in time to fix your mistakes, but you can learn from them and forgive yourself for not knowing better.” Leon Brown

“Accept the past as past, without denying it or discarding it.” Mitch Albom

Forgive Ourselves: Dr. Elaine in her post “The-healing-power-of-forgiveness” nicely summarized self-forgiveness: “We tend to believe that forgiveness supports the transgression that has been committed against us. But forgiveness is not an endorsement of wrongdoing; rather, it’s an act of releasing the pain and hurt it caused through love, the root of forgiveness—and it is not love of the other but of the self. We must forgive ourselves as well as others in order to be whole and healed.”

Effect of Forgiveness on Health: The sum total of our health is a complex formula that differs slightly for each one of us.  Those of us with a progressive neurodegenerative disorder like Parkinson’s increases the complexity of this life-equation.  Thus, dealing with the axis defined by forgiveness/unforgiveness in the matter of health (both mental and physical) clearly could complicate our health.  Truly we need to add forgiveness as a filter to our life-lens; the benefits from this addition should favor our health in the long-run.

“If we all hold on to the mistake, we can’t see our own glory in the mirror because we have the mistake between our faces and the mirror; we can’t see what we’re capable of being. You can ask forgiveness of others, but in the end the real forgiveness is in one’s own self.” Maya Angelou

Cover photo credit: https://orig05.deviantart.net/0a42/f/2015/095/1/6/painted_wallpaper___fog_on_lake_by_dasflon-d8oiudk

Useful References:

Lawler KA, Younger JW, Piferi RL, Jobe RL, Edmondson KA, Jones WH. The Unique Effects of Forgiveness on Health: An Exploration of Pathways. Journal of Behavioral Medicine. 2005;28(2):157-67. doi: 10.1007/s10865-005-3665-2.

Akhtar, S., Dolan, A., & Barlow, J. (2017). Understanding the Relationship Between State Forgiveness and Psychological Wellbeing: A Qualitative Study. Journal of Religion and Health, 56(2), 450–463. http://doi.org.libproxy.lib.unc.edu/10.1007/s10943-016-0188-9

Lawler-Row KA, Karremans JC, Scott C, Edlis-Matityahou M, Edwards L. Forgiveness, physiological reactivity and health: The role of anger. International Journal of Psychophysiology. 2008;68(1):51-8. doi: https://doi.org/10.1016/j.ijpsycho.2008.01.001.

Rey L, Extremera N. Forgiveness and health-related quality of life in older people: Adaptive cognitive emotion regulation strategies as mediators. Journal of Health Psychology. 2016;21(12):2944-54. doi: 10.1177/1359105315589393. PubMed PMID: 26113528.

Toussaint, L., J.R. Webb.  Theoretical and empirical connections between forgiveness, mental health, and well-being E.L. Worthington Jr (Ed.), Handbook of forgiveness, Brunner–Routledge, New York (2005), pp. 207-226

 

 

 

 

The Yack on NAC (N-Acetyl-Cysteine) and Parkinson’s

“Once you choose hope, anything’s possible.” Christopher Reeve

“Hope is like a road in the country; there was never a road, but when many people walk on it, the road comes into existence.” Lin Yutang

Introduction: N-Acetyl-Cysteine (or N-acetylcysteine, usually abbreviated NAC and frequently pronounced like the word ‘knack’) is an altered (modified by an N-acetyl-group) form of the sulfur-containing amino acid cysteine (Cys).  NAC is one of the building blocks for the all important antioxidant substance glutathione (GSH).   GSH is a powerful reagent that helps cells fight oxidative stress.  One of the putative causes of Parkinson’s is oxidative stress on dopamine-producing neurons (see figure below). This post summarizes some of the biochemistry of NAC and GSH.  Furthermore, NAC may provide some neuroprotective benefit as a complementary and alternative medicine (CAM) approach to treating Parkinson’s.

“Losing the possibility of something is the exact same thing as losing hope and without hope nothing can survive.” Mark Z. Danielewski

17.05.24.Causes_PD

 Glutathione (GSH):  GSH is a 3-amino acid substance (tripeptide) composed of Cys linked to glutamate (Glu) and followed by glycine (Gly). NAC would need to be de-acetylated to provide Cys and that would feed in to the reaction synthesis. Importantly, Cys is the rate limiting reactant, which means without adequate amounts of Cys you do not make GSH.   The schematic below gives the orientation and order of addition of the three amino acid components to give you GSH.

NACtoGSH

There are two advantages of NAC over Cys for making GSH: (i) the sulfhydryl group of NAC remains reduced (that is as an SH group) more so than the SH group of Cys; and (ii) the NAC molecule appears to transport itself through cell membranes much more easily than Cys.  The reduced (i.e.,  free SH group) form of GSH, once synthesized within the cell, has several key functions that range from antioxidant protection to protein thiolation to drug detoxification in many different tissues.   The key function of GSH is to provide what is known as “reducing equivalents” to the cell, which implies an overall key antioxidant effect.

The schematic below shows NAC transport from extracellular to intracellular (inside the cell), and the primary reactions for detoxification and thiolation from GSH. Implied by this figure below is that GSH is not easily transported into the cell. Furthermore, in a more toxic/hostile environment outside of the cell, you can easily oxidize 2 GSH molecules to become GSSG (the reduced SH group gets oxidized to form an S-S disulfide bond) and GSSG does not have the antioxidant effect of GSH.   However, inside the cell, GSH is a very potent antioxidant/detoxifying substance. And the beauty of being inside the cell, there is an enzyme called GSH-reductase that regenerates GSH from GSSG.

Rushworth-NAC.review-4.2

To recap and attempt to simplify what I just said, NAC gets delivered into a cell, which then allows the cell to generate intracellular GSH.  The presence of intracellular GSH gives a cell an enormous advantage to resist potentially toxic oxidative agents. By contrast, extracellular GSH has a difficult path into the cell; and is likely to be oxidized to GSSG and rendered useless to help the cell.

“Just remember, you can do anything you set your mind to, but it takes action, perseverance, and facing your fears.”  Gillian Anderson

One of many biological functions of NAC:   Perhaps the most important medical use of NAC is to help save lives in people with acetaminophen toxicity, in which the liver is failing.  How does NAC do this?  Acetaminophen is sold as Tylenol.  It is also added to compounds that are very important for pain management ()analgesics), including Vicodin and Percocet. Acetaminophen overdose is the leading cause of acute liver failure in the USA.   This excess of acetaminophen rapidly consumes the GSH in the liver, which then promotes liver death.  NAC quickly restores protective levels of GSH  to the liver, which hopefully reverses catastrophic liver failure to prevent death.

Systemically, when taken either orally or by IV injection, NAC would have 2 functions.  First, NAC replenishes levels of Cys to generate the intracellular antioxidant GSH (see schemes above).  Second, NAC has been shown to regulate gene expression of several pathways that link oxidative stress to inflammation.  Since the primary goal of this post relates to NAC as a CAM in Parkinson’s, I will not expand further on the many uses of NAC in other disease processes.  However, listed at the end are several review articles detailing the numerous medicinal roles of NAC.

“Love, we say, is life; but love without hope and faith is agonizing death.” Elbert Hubbard

Use of NAC as a CAM in Parkinson’s:   This is what we know about oxidative stress in Parkinson’s and the potential reasons why NAC could be used as a CAM in this disorder, it goes as follows  (it’s also conveniently shown in the figure at the bottom):

1. Substantia nigra dopamine-producing neurons die from oxidative stress, which can lead to Parkinson’s.

2.What is oxidative stress? Oxidative stress happens when your cells in your body do not make/have enough antioxidants to reduce pro-oxidants like free radicals. Free radicals cause cell damage/death when they attack proteins/cell membranes.

3.We speak of oxidative stress in terms of redox imbalance (which means the balance between increased amounts of oxidants or  decreased amounts of antioxidants).

4.Glutathione (GSH) is a key substance used by cells to repair/resist oxidatively damaged cells/proteins.

5.”Forces of evil” in the brain that make it difficult to resist oxidative stress:  decreased levels of GSH,  increased levels of iron and  increased polyunsaturated fatty acids.

6.Extracellar GSH cannot be transported easily into neurons, although there is evidence GSH gets past the blood brain barrier;

7.N-acetyl Cysteine (NAC), is an anti-oxidant and a precursor to GSH.  NAC gets through the blood brain barrier and can also be transported into neurons.

8.Cysteine is the rate-limiting step for GSH synthesis (NAC would provide the cysteine and favor synthesis of GSH).

9.Animal model studies have shown NAC to be neuroprotective.

10. Recent studies have shown NAC crosses the human blood brain barrier and may be a useful PD-modifying therapy.

 

17.05.26.OX_Stress

“You cannot tailor-make the situations in life but you can tailor-make the attitudes to fit those situations.”  Zig Ziglar

Scientific and clinical support for NAC in treating Parkinson’s: Content presented here is meant for informational purposes only and not as medical advice.  Please remember that I am a basic scientist, not a neurologist, and any use of these compounds should be thoroughly discussed with your own personal physician. This is not meant to be an endorsement  because it would be more valuable and important for your neurologist to be in agreement with the interpretation of these papers.

Screen Shot 2017-05-25 at 3.43.19 PM

To evaluate the use of NAC in Parkinson’s, Katz et al. treated 12 patients with Parkinson’s with oral doses of NAC twice a day for two days.   They studied three different doses of 7, 35, and 70 mg per kilogram. For example, in a person weighing 170 pounds, from a Weight Based Divided Dose Calculator (click here), this would be 540, 2700, and 5400 mg/day of NAC for 7, 35, and 70 mg/kg, respectively. Using cerebral spinal fluid (CSF), they measured levels of  NAC, Cys, and GSH at baseline and 90 minutes after the last dose. Their results showed that there was a dose-dependent range of NAC as detected by CSF. And they concluded that oral administration of NAC produce biologically relevant CSF levels of NAC at the three doses examined; the doses of oral NAC were also well-tolerated.  Furthermore, the patients treated with NAC had no change in either motor or cognitive function. Their conclusions support the feasibility of using oral NAC as a CAM therapy for treatment of Parkinson’s.

Screen Shot 2017-05-25 at 3.47.06 PM

In a separate study, Monti at al  presented some preliminary evidence for the use of NAC in Parkinson’s. The first part of their study consisted of a neuronal cell system that was pre-treated with NAC in the presence of the pesticide rotenone as a model of Parkinson’s.   These results showed that with NAC there was more neuronal cell survival after exposure to rotenone compared to the rotenone-treated cells without NAC. The second part of the study was a small scale clinical evaluation using NAC in Parkinson’s. These patients were randomized and given either NAC or nothing and continued to use their traditional medical care. The patients were evaluated at the start and after three months of receiving NAC; they measured dopamine transporter binding and  performed the unified Parkinson’s disease rating scale  (UPDRS) to measure clinical symptoms. The clinical study revealed an increase in dopamine transporter binding in the NAC treatment group and no measurable changes in the control group. Furthermore UPDRS scores were significantly improved in the NAC treatment group compared to the control patient group.   An interesting feature of this study was the use of pharmaceutical NAC, which is an intravenous (IV) medication and they also used 600 mg NAC tablets. The dose used was 50 mg per kg mixed into sterile buffer and infused over one hour one time per week. In the days they were not getting the IV NAC treatment, subjects took 600 mg NAC tablets twice per day.

 Okay, what did I just say? I will try to summarize both of these studies in a more straightforward manner.   The results above suggest that NAC crosses the blood brain barrier and does offer some anti-oxidative protection. In one study, this was shown by increased levels of both GSH and Cys dependent on the NAC dose. In another study, they directly measured dopamine transporter binding, which was increased in the presence of NAC. In the second study using a three month treatment strategy with NAC, there was a measurable positive effect on disease progression as measured by UPDRS scores.  

“Our greatest weakness lies in giving up. The most certain way to succeed is always to try just one more time.” Thomas A. Edison

Potential for NAC in treating Parkinson’s: Overall, both studies described above suggest the possibility that NAC may be useful in treating Parkinson’s. However, in both cases these were preliminary studies that would require much larger randomized double-blind placebo-controlled trials to definitively show a benefit for using NAC in treating Parkinson’s. On a personal note, I have been taking 600 mg capsules of NAC three times a day for the past year with the hope that it is performing the task as outlined in this post. Using information from the first study that would be a NAC dose of 24 mg per kilogram body weight. In conclusion, the information described above suggests that NAC may be useful in regulating oxidative stress, one of the putative causes of Parkinson’s. As with all studies, time will tell if ultimately there is a benefit for using NAC in Parkinson’s.

“I am not an optimist, because I am not sure that everything ends well. Nor am I a pessimist, because I am not sure that everything ends badly. I just carry hope in my heart. Hope is the feeling that life and work have a meaning. You either have it or you don’t, regardless of the state of the world that surrounds you. Life without hope is an empty, boring, and useless life. I cannot imagine that I could strive for something if I did not carry hope in me. I am thankful to God for this gift. It is as big as life itself.” Vaclav Havel

References Used:
Katz M, Won SJ, Park Y, Orr A, Jones DP, Swanson RA, Glass GA. Cerebrospinal fluid concentrations of N-acetylcysteine after oral administration in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(5):500-3. doi: 10.1016/j.parkreldis.2015.02.020. PubMed PMID: 25765302.

Martinez-Banaclocha MA. N-acetyl-cysteine in the treatment of Parkinson’s disease. What are we waiting for? Med Hypotheses. 2012;79(1):8-12. doi: 10.1016/j.mehy.2012.03.021. PubMed PMID: 22546753.

Monti DA, Zabrecky G, Kremens D, Liang TW, Wintering NA, Cai J, Wei X, Bazzan AJ, Zhong L, Bowen B, Intenzo CM, Iacovitti L, Newberg AB. N-Acetyl Cysteine May Support Dopamine Neurons in Parkinson’s Disease: Preliminary Clinical and Cell Line Data. PLoS One. 2016;11(6):e0157602. doi: 10.1371/journal.pone.0157602. PubMed PMID: 27309537; PMCID: PMC4911055.

Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE. Neuroinflammation, Oxidative Stress and the Pathogenesis of Parkinson’s Disease. Clin Neurosci Res. 2006;6(5):261-81. doi: 10.1016/j.cnr.2006.09.006. PubMed PMID: 18060039; PMCID: PMC1831679.

Nolan YM, Sullivan AM, Toulouse A. Parkinson’s disease in the nuclear age of neuroinflammation. Trends Mol Med. 2013;19(3):187-96. doi: 10.1016/j.molmed.2012.12.003. PubMed PMID: 23318001.

Rushworth GF, Megson IL. Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther. 2014;141(2):150-9. doi: 10.1016/j.pharmthera.2013.09.006. PubMed PMID: 24080471.

Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int. 2013;62(5):803-19. doi: 10.1016/j.neuint.2012.12.016. PubMed PMID: 23291248.

Cover photo credit: https://s-media-cache-ak0.pinimg.com/originals/e8/33/ae/e833aeb408a432d419628c803bf14498.jpg

Save

Parkinson’s Disease Research: A Commentary from the Stands and the Playing Field

“You can have a very bad end with Parkinson’s, but on the other hand, you can be like me, because I’m lucky. I’m not having a bad end.” Margo MacDonald

“My age makes me think how valuable life is. How bad is something like Parkinson’s in relation to not having life at all?” Michael J. Fox

Introduction: Last month, together with Dr. Simon Stott and his team of scientists (The Science of Parkinson’s Disease), we co-published a historical timeline of Parkinson’s disease beginning with the description of the ‘shaking palsy’ from James Parkinson in 1817. My post entitled “Milestones in Parkinson’s Disease Research and Discovery” can be read here (click this link). The Science of Parkinson’s Disease post entitled “Milestones in Parkinson’s Disease Research and Discovery” can be read here (click this link).

We spent a lot of time compiling and describing what we felt were some of the most substantial findings during the past 200 years regarding Parkinson’s disease.  I learned a lot; truly amazing what has been accomplished in our understanding of  such a complex and unique disorder.  Simon posted a follow-up note entitled “Editorial: Putting 200 years into context” (click this link). I have decided to also post a commentary from the standpoint of (i) being someone with Parkinson’s and (ii) being a research scientist.

“Every strike brings me closer to the next home run.” Babe Ruth

Baseball: I want to use the analogy of a baseball game to help organize my commentary. Baseball fans sit in the stands and have fun watching the game, thinking about the strategy behind the game, eating/drinking, and sharing the experience with family/friends/colleagues.   Most baseball players begin playing early in life and the ultimate achievement would be to reach the major leagues. And this would usually have taken many years of advancing through different levels of experience on the part of the ballplayer. How does how this analogy work for me in this blog? Stands: I am a person-with-Parkinson’s watching the progress to treat and/or cure this disorder. Playing field: I am a research scientist in a medical school (click here to view my training/credentials).

“Never allow the fear of striking out keep you from playing the game!”  Babe Ruth

Observation from the stands:
I am a spectator like everyone else with Parkinson’s. I read much of the literature available online.  Like you, I think about my disorder; I think about how it’s affecting me every day of my life. Yes, I want a cure for this disease.  Yes, I’m rather impatient too.  I understand the angst and anxiety out there with many of the people with Parkinson’s. In reality, I would not be writing this blog if I didn’t have Parkinson’s. Therefore, I truly sense your frustration that you feel in the presence of Parkinson’s, I do understand.  Given below are examples of various organizations and ads and billboards in support of finding a cure for Parkinson’s.  Some even suggest that a cure must come soon.   However, the rest of my post is going to be dedicated to trying to explain why it’s taking so long; why I am optimistic and positive a cure and better treatment options are going to happen.  And it is partly based on the fact that there really are some amazing people working to cure Parkinson’s and to advance our understanding of this disorder.

“When you come to a fork in the road take it.” Yogi Berra

Observations from the playing field (NIH, war on cancer, research lab, and advancing to a cure for Parkinson’s):

National Institutes of Health (NIH) and biomedical research in the USA: Part of what you have to understand, in the United States at least, is that a large portion of biomedical research is funded by the NIH (and other federally-dependent organizations), which receives a budget from Congress (and the taxpayers). What does it mean for someone with Parkinson’s compared to someone with cancer or diabetes? The amount of federal funds committed to the many diseases studied by NIH-funded-researchers are partly divvied up by the number of people affected. I have prepared a table from the NIH giving the amount of money over the past few years for the top four neurodegenerative disorders, Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis (ALS), and Huntington’s Disease, respectively [taken from “Estimates of Funding for Various Research, Condition, and Disease Categories” (click here)]. And this is compared to cancer and coronary arterial disease and a few other major diseases. Without going into the private organizations that fund research, a large amount of money comes from the NIH. Unfortunately, from 2003-2015, the NIH lost >20% of its budget for funding research (due to budget cuts, sequestration, and inflationary losses; click here to read further).   Therefore,  it is not an overstatement to say getting  funded today by the NIH is fiercely competitive.  From 1986 to 2015, my lab group was supported by several NIH grants and fellowships  (and we also received funding from the American Heart Association and Komen for the Cure).

17.05.04.NIH.Funding

“In theory, there is no difference between theory and practice. But in practice, there is.” Yogi Berra

War against cancer: In 1971, Pres. Richard Nixon declared war against cancer and Congress passed the National Cancer Act.  This created a new national mandate “to support research and application of the results of research to reduce the incident, morbidity, and mortality from cancer.” Today, cancer is still the second leading cause of death in the USA; however, we’ve come such a long way to improving this statistic from when the Cancer Act was initiated.

Scientifically, in the 1970’s, we were just learning about oncogenes and the whole field of molecular biology was really in its infancy. We had not even started sequencing the human genome, or even of any organism.  We discovered genes that could either promote or suppress cellular growth.   We began to delineate the whole system of cell signaling and communications with both normal and malignant cells. We now know there are certain risk factors that allow us to identify people that may have increased risk for certain cancers. Importantly,  we came to realize that not all cancers were alike,  and it offered the notion to design treatment strategies for each individual cancer.  For example,  we now have very high cure rates for childhood acute leukemia and Hodgkin’s lymphoma and we have significantly improved survival statistics for women with breast cancer. Many might say this was a boondoggle and that we wasted billions of dollars  funding basic biomedical research on cancer; however, basic  biomedical research is expensive and translating that into clinical applications is even more expensive.  [ For a  very nice short review on cancer research please see the following article, it may be freely accessible by now: DeVita Jr, Vincent T., and Steven A. Rosenberg. “Two hundred years of cancer research.” New England Journal of Medicine 366.23 (2012): 2207-2214.]

“One of the beautiful things about baseball is that every once in a while you come into a situation where you want to, and where you have to, reach down and prove something.” Nolan Ryan

The biomedical research laboratory environment:  A typical laboratory group setting is depicted in the drawing below. The research lab usually consists of the lead scientist who has the idea to study a research topic, getting grants funded and in recruiting a lab group to fulfill the goals of the project.  Depending on the philosophy of the project leader the lab may resemble very much like the schematic below or may be altered to have primarily technicians or senior postdoctoral fellows working in the lab  (as two alternative formats). A big part of academic research laboratories is education and training the students and postdocs to go on to advance their own careers; then you replace the people that have left and you continue your own research.  Since forming my own lab group in 1986, I have helped train over 100 scientists in the research laboratory: 17 graduate students, 12 postdoctoral fellows, 17 medical students, and 64 undergraduates. The lab has been as large as 10 people and a small as it is currently is now with two people. People come to your lab group because they like what you’re doing scientifically and this is where they want to belong for their own further training and advancement.  This description is for an academic research  laboratory; and  I should also emphasize that many people get trained in federal government-supported organizations, private Pharma and other types of research environments that may differ in their laboratory structure and organizational format.

15.05.11.Lab_Organization

“Hitting is 50% above the shoulders.” Ted Williams

 In search of the cure for Parkinson’s:    First, I understand the situation you’re in with Parkinson’s because I’m living through the same situation.   But when people find out I’m a research scientist they always wonder why aren’t we doing more to find a cure, and I  hear the sighs of frustration and I see the anxiety in their faces. Second, the previous three sections are not meant to be an excuse for why there is still no cure for Parkinson’s. It is presented in the reality of what biomedical research scientists must undergo to study a topic.  Third, the experiments that take place in basic biomedical research laboratory may happen over weeks to months if successful. Taking that laboratory data to the clinic and further takes months and years to succeed if at all.   The section on cancer reminds me a lot of where we are going with Parkinson’s and trying to advance new paradigms in the treatment and curative strategies.  Professionally, I have even decided  to pursue research funding in the area of Parkinson’s disease.   Why not spend the rest of my academic career studying my own disease; in the least I can help educate others about this disorder. Furthermore, I can assure you from my reading and meeting people over the last couple of years, there are many hundreds of scientists and clinicians throughout this world studying Parkinson’s and trying to advance our understanding and derive a cure.  I see their devotion, I see their commitment to helping cure our disorder.

The science behind Parkinson’s is quite complicated. These complications suggest that Parkinson’s may be more of a syndrome rather than a disease. Instead of a one-size-fits-all like a disease would be classified; Parkinson’s as a syndrome would be a group of symptoms which consistently occur together.  What this might imply is that some treatment strategy might work remarkably well on some patients but have no effect on others. However, without a detailed understanding and advancement of what Parkinson’s really is we will never reach the stage where we can cure this disorder.

bright-future-ahead-1024x772
In a recent blog from the Science of Parkinson’s disease, Simon nicely summarized all the current research in 2017 in Parkinson’s disease (click here to read this post). To briefly summarize what he said is that there are multiple big Pharma collaborations occurring to study Parkinson’s.  There are more than 20 clinical trials currently being done in various stages of completion to prevent disease progression but also to try to cure the disorder.  From a search of the literature, there are literally hundreds of research projects going on that promise to advance our understanding of this disorder. With the last point, it still will take time to happen. Finally, I am a realist but I’m also optimistic and positive that we’re making incredible movement toward much better therapies, which will eventually lead to curative options for Parkinson’s.

And a final analogy to baseball and Parkinson’s, as Tommy Lasorda said “There are three types of baseball players: those who make it happen, those who watch it happen, and those who wonder what happens.”  I really want to be one of those scientists that help make it happen (or at least to help advance our understanding of the disorder).

“You can’t expect life to play fair with your heart or your brain or your health. That’s not the nature of the game we call life. You have to recognize the nature of the game and know that you can do your best to make the right choices, but life if going to do whatever the hell it pleases to you anyway. All you can control is how you react to whatever life throws at you. You can shut down or you can soar.” Holly Nicole Hoxter

Cover photo credit: PNC Park photo: i.imgur.com/32RWncK

Sign post scienceofparkinsons.com/

Driving Under the Influence of Parkinson’s

“Have you ever noticed that anybody driving slower than you is an idiot, and anyone going faster than you is a maniac?” George Carlin

“If all the cars in the United States were placed end to end, it would probably be Labor Day Weekend.” Doug Larson

The Dilemma: At some age in our life, maybe, just maybe, we could lose the privilege of driving our car/truck.  If you are living with Parkinson’s, depending on the individual, losing the legal right to drive your motor vehicle might/could happen at an even earlier age.  A discussion of driving under the influence of Parkinson’s is presented here.

“I love driving cars, looking at them, cleaning and washing and shining them. I clean ’em inside and outside. I’m very touchy about cars. I don’t want anybody leaning on them or closing the door too hard, know what I mean?” Scott Baio

The Michon model of normal driving behavior:  In 1985, Michon proposed that drivers need to conduct problem-solving while driving; he divided it  into three levels of skill and control. The model includes strategic (planning), tactical (maneuvering), and operational (control) levels.   When you think about it driving really is a complicated task.   The strategic level is basically the general route and planning needed to successfully navigate the motor vehicle.  The tactical and control levels involve the individual driving circumstances and how one responds and our responsiveness to the action of driving.   And of course, it’s quite obvious, that unsafe driving is operating a motor vehicle in an unsafe manner regardless of your health status. Driving safely is important for the individual as well as for the people around you; thus, it is a serious task to evaluate someone’s competency to drive a motor vehicle. Shown below is a schematic drawing of the Michon model of normal driving behavior.

17.04.07.Driving.Model

“The one thing that unites all human beings, regardless of age, gender, religion, economic status, or ethnic background, is that, deep down inside, we all believe that we are above-average drivers.” Dave Barry

Decision-making while driving:   Below are some traffic signs that we might encounter in our usual driving pattern depending on where we live. When you think about decision-making you’re in your lane you’re driving down the road and you see signs like this, then what?  You can see how it takes all three levels of driving competency to navigate successfully while driving a motor vehicle in a complex maneuver.  Now add the complications of someone with Parkinson’s, you may need to re-think the entire situation. What this says is that when you’re driving a motor vehicle you’re trying to integrate many levels of sensory, motor and cortical function to the process. In Parkinson’s, we may have some sort of motor skill/task impairment, potentially mixed with a minor cognitive disorder, and further clouded by traditional drug therapy. Who makes the decision for the patient with Parkinson’s about being able to continue to drive?  Not an easy answer.

“Some beautiful paths can’t be discovered without getting lost.” Erol Ozan

 Possible problems that could occur while driving with Parkinson’s: The control or operational level of driving a car can be influenced by motor defects experienced by many with Parkinson’s, including rigidity, tremor, bradykinesia and dyskinesia. Futhermore, non-motor deficits could impair both route planning, strategic and tactical levels, and these would include cognitive decline, neuropsychiatric symptoms and/or visual impairment. And on top of that in the elderly population, many people with Parkinson’s have additional co-morbidity that could also contribute to diminish our ability to drive a motor vehicle. Thinking about just one aspect, slowness in cognitive function, the inability to make a decision quickly could lead to poor performance time and might affect driving in someone with Parkinson’s. Alternatively, you may have none of these problems and will be driving for many more years. But as we all start to exhibit signs and symptoms of motor and non-motor deficits, this will eventually become an important issue for each of us to deal with at some point in time.

“Always focus on the front windshield and not the review mirror.” Colin Powell

 What are some criteria for determining our fitness to drive a motor vehicle when you have Parkinson’s? In a very nice review, Jitkritsadakul and Bhidayasiri suggest there are five different red flags that should tell our neurologist that we may have an impairment that should limit our driving of motor vehicles. First, these include our clinical history, which would be a history of accidents, sleeping attacks while driving and combined with the daily dose amount of levodopa. Next would be a questionnaire to determine our level of daily sleepiness. Third, a motor assessment skills test. Fourth, a cognitive assessment. And fifth would be a visual assessment.  Look above at the Michon driving schematic and think about the three levels of skill required for driving and substitute someone with Parkinson’s and how that could diminish one or more of the skill sets over time.  What this says to me is that through a combination of family and friends and carepartner,  along with the advice of our neurologist, one should be able to make a critical assessment of whether or not we should continue to drive.

“Driving your car through deep pools of flood water is a great way of making your car unreliable. Smart people turn around and avoid it.” Steven Magee

A love of motor vehicles (a personal expression):  I grew up loving automobiles; and living on Air Force Bases, I saw many different types of sports cars  (e.g., Corvette, Jaguar, Triumph, Porsche, Shelby Mustang, Ferrari- you just had to believe that Air Force pilots live for speed in the air and their cars showed it on the ground). I can remember in 1964 (I was 11 years old) going to the Ford dealership with my dad to see the very first Ford Mustang cars; thinking how beautiful they were and remembering my dad’s comment that was a lot of car for $2,400.   I still have vivid memories of riding with my dad (yes, he was a former pilot) in his ~1962 white Porsche. I can still remember in 1971 getting my first car, a 1968 Chevrolet Camaro (red interior and red exterior) with standard transmission (three on the floor) and powered by a 327 cubic inch V-8 engine. [Please note, the pictures below are representative images because I could not find any actual old photos of these cars]

IMG_3832

Over the decades, I can recall the weekly car-washing sessions, typically on Saturday mornings. With the exception of one car in the early 1980’s, I have loved and truly enjoyed the automobiles I’ve driven.  Like many people I’ve named all my cars; my two current automobiles are named Raven and Portia. I still enjoy driving a standard shift car using the clutch that requires both cognitive function and motor skills to navigate the automobile. I have always thought “It’s going to be a cold day in hell before they take my car away”; however, it’s a reality in the future I now face with Parkinson’s. In fact one of the very first people I ever told about my Parkinson’s several years ago, the very first question she asked me was “Are you still able to drive?”  In summary, driving under the influence of Parkinson’s is something we all will need to consider with time; I wish you well with your driving experiences.

“Driving a car provides a person with a rush of dopamine in the brain, which hormonal induced salience spurs modalities of creative and critical thinking regarding philosophical concepts such as truth, logical necessity, possibility, impossibility, chance, and contingency.” Kilroy J. Oldster

https://www.ncbi.nlm.nih.gov/pubmed/27729986

1.    Jitkritsadakul O, Bhidayasiri R. Physicians’ role in the determination of fitness to drive in patients with Parkinson’s disease: systematic review of the assessment tools and a call for national guidelines. Journal of Clinical Movement Disorders. 2016;3(1):14. doi: 10.1186/s40734-016-0043-x.

Cover photo credit: s-media-cache-ak0.pinimg.com/564x/22/d1/75/22d175ac53a0a5dbb04e77ae52a49c52.jpg

Save

Save

Building Empathy for Parkinson’s

“When people talk, listen completely. Most people never listen.”  Ernest Hemingway

“To perceive is to suffer.”  Aristotle

Introduction: The loss of dopamine-producing neurons in the mid-brain leads to Parkinson’s disease, which usually presents with motor dysfunction of different degrees of progression from person-to-person.  This post explores the differences between empathy and sympathy, and describes a new device that allows one to actually experience a person-with-Parkinson’s tremor; surely providing much empathy from the experience.

“No one cares how much you know, until they know how much you care”  Theodore Roosevelt

A lesson learned from the classic rock opera “Tommy” by The Who: The plot of the 1969 rock opera “Tommy” begins with Tommy’s parents.  His father, Captain Walker, fought in World War II but it is assumed he died. However, Captain Walker is alive and returns home to his wife and Tommy. Believing her husband to be dead, Mrs. Walker has a new lover.  Captain Walker accidentally kills the lover, in the presence of Tommy. Tommy is traumatized by what he witnessed; he becomes catatonic.  Three musical examples: Go to the Mirror (listen here) Tommy sings “See me, me, feel me, touch me, heal me / See me, feel me, touch me, heal me.” Tommy’s father sings “I often wonder what he is feeling / Has he ever heard a word I’ve said? / Look at him in the mirror dreaming / What is happening in his head?” In Tommy Can You See Me? (listen here)  his mother sings “Tommy can you hear me? / Can you feel me near you? /  Tommy can you feel me / Can I help to cheer you.” In See Me, Feel Me (listen here) Tommy sings “See me, feel me, touch me, heal me / See me, feel me, touch me, heal me / See me, feel me, touch me, heal me / See me, feel me, touch me, heal me / Listening to you, I get the music / Gazing at you, I get the heat / Following you, I climb the mountain / I get excitement at your feet.” Hopefully, you can empathize, not sympathize, with Tommy and the life-struggles he encounters and overcomes in this rock opera.

“for there is nothing heavier than compassion. Not even one’s own pain weighs so heavy as the pain one feels with someone, for someone, a pain intensified by the imagination and prolonged by a hundred echoes.” Milan Kundera

*Empathy vs. sympathy: Empathy means you have the ability to understand and share the feelings of another.  By contrast, sympathy means feelings of pity and sorrow for someone else’s misfortune (https://en.oxforddictionaries.com/definition/empathy). Yes, it sucks to have a chronically-progressing neurodegenerative disorder like Parkinson’s. But it could be worse, really.

Empathy.  What a great word.  Try to be empathetic to me; you don’t have to become one with me, just strive to understand how I’m feeling.  Our bond will surely strengthen.  You may not be able to exactly feel what I’m feeling, but just trying says much to you, your inner processing, the soul of your humanity.

Please don’t pity me, that reduces the feelings between us.  Please don’t have sorrow or sadness for me, it weakens our ties. If you give me sympathy, you’ll never truly be able to grasp the extent and meaning of my Parkinson’s.  Parkinson’s is not my friend; however, having your friendship and understanding (empathy) instead of your pity (sympathy) will give me strength and help me deal on a more positive-front with this unrelenting disorder.

*This post is dedicated to the first-year medical students at the UNC School of Medicine. On Friday, May 5, I had the privilege and honor of being presented as a person-with-Parkinson’s in our Neurologic Block. They asked very specific questions in their attempt to understand Parkinson’s and to learn how I am living with this disorder. It was clear that they were trying to follow the advice of Dr. William Osler who said “It is much more important to know what sort of a patient has a disease than what sort of a disease a patient has.”

“Some people think only intellect counts: knowing how to solve problems, knowing how to get by, knowing how to identify an advantage and seize it. But the functions of intellect are insufficient without courage, love, friendship, compassion, and empathy.”  Dean Koontz

What is the life expectancy of someone diagnosed with Alzheimer’s, Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), and Huntington’s disease? These neurodegenerative disorders are listed in ranked order of how many people are affected from most to least, respectively. Alzheimer’s typically progress over 2 to 20 years, and individuals live for 8 to 10 years after the diagnosis.  People who have Parkinson’s usually have the same average life expectancy as people without the disease.  Life expectancy from ALS is usually at least 3-4 years. The time from diagnosis  of Huntington’s to death is about 10 to 30 years.  Each of these disorders is uniquely different and unsettling to me; but your empathy, not your sympathy, will truly help me sail my boat along the shoreline for many more years.  Accept me with ‘my unique medical issues’, try to understand it. Your empathy will add stability to my battle; just watch.

“Resolve to be tender with the young, compassionate with the aged, sympathetic with the striving, and tolerant of the weak and the wrong. Sometime in life you will have been all of these.” Lloyd Shearer

A novel engineering device is empathy-producing to someone with Parkinson’s: The whole story is revealed from watching this video (click here). Klick Labs in Toronto, Canada, has created the SymPulse Tele-Empathy Device. This device is capable of mimicking and producing the tremors and involuntary movements of someone with Parkinson’s in people without Parkinson’s. The video is quite powerful, you immediately sense the empathy.

The SymPulse Tele-Empathy Device is based on digitized muscle activity from electromyograms of Parkinson’s patients. The signal is unique for each person with Parkinson’s. When the person without Parkinson’s receives this novel voltage pattern, their muscles will contract exactly as found in the person with Parkinson’s. Developing such a device shows the deviant nature of Parkinson’s to disrupt/distort normal neuro-muscular circuitry.

This device could be used to increase empathy in doctors and other caregivers. And it could enable family members and loved-ones the unique opportunity to experience the actual tremor/involuntary movements of their special person with Parkinson’s. Company officials note that most people wear the device for at most a couple of minutes; turn off the device and they return to normal. Remember, there is no off-on switch for the person with Parkinson’s.  I can only imagine empathy evolving from this device when used on someone without Parkinson’s.

“When we honestly ask ourselves which person in our lives mean the most to us, we often find that it is those who, instead of giving advice, solutions, or cures, have chosen rather to share our pain and touch our wounds with a warm and tender hand. The friend who can be silent with us in a moment of despair or confusion, who can stay with us in an hour of grief and bereavement, who can tolerate not knowing, not curing, not healing and face with us the reality of our powerlessness, that is a friend who cares.” Henri J.M. Nouwen

Cover photo credit: gsmnp.com/wp-content/uploads/View-of-Smoky-Mountains-from-Oconaluftee.jpg